
DevOps
On Thursday

• In the last session, we saw how CI/CD pipeline looks like.
• We talked about continuous integration and continuous delivery concepts. •
We tackle different CI tools like bamboo, Travis CI and Jenkins • We saw
the reason why we are using Jenkins as the CI server instead of Bamboo or
Travis CI.
• We also defined the difference between a job and a build
• We saw that Jenkins can automate almost any job because it is friendly with

MacOS, Windows and Linux
• We learnt about tools like Maven, Selenium, Git, and GitHub. • We
covered some of the disadvantages of using Jenkins as a CI server • We
also defined ways to solve the challenges we can face while using
Jenkins as the CI server.
• We also learnt about different environments such as Development, QA,

Production/operations

Before we go to terraform, let add the following to the DevOps Pipeline

• Docker
• Ansible
• Kubernetes

Let define them

Docker? -

Ansible – This is a service that is used to save time and increase the productivity of
the DevOps team. It does this by automating the deployment of the complex,
repetitive and tedious processes in the DevOps pipeline. Ansible is an automation
tool. It is highly used in deployment and configuration processes. It is very
important because it helps to organize, run complex, repetitive and tedious tasks in
the DevOps pipeline. For instance, rolling updates for continuous deployment to
happen, you can use ansible. You can also use ansible in the continuous delivery
process after the code has been released from the QA team and ansible can
automate some complex, tedious, and repetitive process involved in continuous
delivery process.

When you use Ansible to configure the tools in the DevOps pipeline, difficult
manual tasks become repeatable and less vulnerable to error.

Other areas you can use ansible include storing the artifacts to the antifactory,
deploying images to hub.docker.com or pushing them to docker

Kubernetes - On the other hand, Kubernetes is a system designed to coordinate
Docker containers. Kubernetes, also known as K8s, is an open-source system for
automating deployment, scaling, and management of containerized applications.

What type of scaling is available in Kubernetes?

Do not forget that K8s can also be used in managing other containers and not just
docker.

Kubernetes clusters allow containers to run across multiple machines and
environments: virtual, physical, cloud-based, and on-premises. Kubernetes
containers are not restricted to a specific operating system, unlike virtual machines.
Instead, they can share operating systems and run anywhere.

Terraforms

When using terraform, since it is a declarative tool, you do not need to define the
steps that will allow you to get the result. You just need to define What end results
you want and terraform will figure out the steps to take to give you the results.

Imperative is the opposite. You must define the steps that will help you to get what
end results you want.

Let look at what is infrastructure provisioning

In this scenario, we want to deploy docker application.

The first step is to prepare the infrastructure we are going to deploy.

Remember how we create AWS diagram. That was infrastructure provisioning
because we never deployed the diagram.

When the infrastructure is ready, we then deploy the code.

There are two things in one

Preparing the infrastructure (provisioning) and d deploying the ready infrastructure

You can have two teams doing the two tasks.

Provisioning team – DevOps

Deploying – Operational/production team

You must build the architecture in order because that how terraform will execute

the declarative commands. Remember the document we had in AWS. We defined
all the steps in provisioning an AWS infrastructure.

Terraform comes in handy in infrastructure provisioning

Both are used for provisioning and automation
BUT

Ansible is more mature
Let make a final statement

Ansible is a better tool for configuring and deploying the readymade
infrastructures
Terraform is a better tool in the provisioning of the infrastructure – The process of
preparing and ensuring the infrastructure is ready.

DevOps engineers use both tools to cover the application/software building end to
end and I believe you now know why.

Different Infrastructure as Code Tools

Managing the existing infrastructure is easy with terraform. Just declaring what
the end results of the changes should look like and terraform will figure out the
steps to give you the end result.

Creating an identical availability zone becomes easy because all you are doing is
take the replica of the code and deploy it.

Remember how we created the availability zones. You can replicate with terraform

How does terraform connect with AWS to create instances
It has two key components to its architecture

1. Terraform core - this has two input sources
The TF-config file you write the declarative commands here. State which
keeps the memory of the current status of the setup/infrastructure you want
to create.

The terraform compares the command and the current state and decides which

needs to be created, deleted, and updated so that it can get to what end results you
want.

The second component is the PROVIDERS

It has over 100 provides who give terraform access to the resources like in AWS
and that is how terraform is able to help you provision the infrastructure and set it
up ready for deployment with ansible. Literally, terraform is making your life very
easy by building your end results and figuring out all the steps to take to give you
that product/result that you want.

However, if you want to deploy and configure the provisioned infrastructure, the
best tool is the Ansible or any other configuration tool out there.

To give you the what end results you requested, the terraform check the tf-config
file and compare with the status to see the updates and the changes needed, then it
connects with the service provider you requested and execute the plan you gave it.

Imperative

Declarative

You just declare the end results that you want and terraform will figure out how to
satisfy your end results.
In imperative you must define all the steps of setting the 7 servers. You have to
answer the question how I set the 7 servers, and which will be steps will be

required.

In declarative terraforms always know the end results. All it needs to do is adjust
the old code or tf-config file to the current codes that you just stated

#REFRESH is to refresh so that you can be in the current state in the setup of the
provide you want to use.

#PLAN – terraform compares the current tf-config file with the current state of the
infrastructure services you want to us, makes the necessary changes in the form of
updating or deleting and then come up with a plan to execute the desired end
results.

#Apply – it is now going to execute the plan that we created.

This means that if you just use the #APPLY command, terraform is going to
REFRESH, PLAN AND EXECUTE THE PLAN and you will get the desired
results.

DESTROY – this command will remove all the declared services one by one
until everything is cleared.

